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ABSTRACT 

Different views of fraction knowledge emerge from distinct origins and 

imply varying consequences for mathematics teaching and learning. 

Underscoring variant theoretical positions of fraction knowledge, we probe 

views of how young learners appropriate natural and fractional numbers. 

We advance a perspective that awareness of fractional numbers results from 

sensing a quantitative relation between the magnitude of two quantities, 

using the psychological mechanisms of stressing and ignoring. Afterward, 

focused on the quantitative relations, we present a mathematical analysis of 

the magnitude of two quantities. Building on the theoretical views of 

fractions, we outline the mathematical and cognitive attributes of two 

models of fraction knowledge—partitioning and measuring—describing 

their historical and philosophical-technological origins. Finally, we describe 

the cognitive consequences of the partitioning perspective and suggest areas 

for future research to investigate further the measuring perspective. 
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RESUMO  
Diferentes visões do conhecimento fracionário emergem de origens distintas e 

implicam consequências variadas para o ensino e a aprendizagem da 

matemática. Ressaltando posições teóricas variantes do conhecimento 

fracionário, investigamos visões de como os jovens aprendizes se apropriam de 

números naturais e fracionários. Avançamos uma perspectiva de que a 

consciência de números fracionários resulta da percepção de uma relação 

quantitativa entre a magnitude de duas quantidades, usando os mecanismos 

psicológicos de enfatizar e ignorar. Em seguida, com foco nas relações 

quantitativas, apresentamos uma análise matemática da magnitude de duas 

grandezas. Com base nas visões teóricas das frações, delineamos os atributos 

matemáticos e cognitivos de dois modelos de conhecimento fracionário – 

particionamento e medição – descrevendo suas origens históricas e filosófico-

tecnológicas. Finalmente, descrevemos as consequências cognitivas da 

perspectiva de particionamento e sugerimos áreas para pesquisas futuras para 

investigar mais a perspectiva de medição. 
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I N T R O D U C T I O N  
Implementing contrasting 

epistemological perspectives of mathematical 

content invariable produces different 

outcomes. How to support learners’ 

meaningful engagement with fraction 

knowledge has been a significant challenge 

for mathematics educators. Teachers struggle 

to help students from their early years of 

schooling conceptualize and operate on 

fractions (Zhou et al., 2006). Students who 

experience difficulties with fractions 

incorrectly order and operate with fractions 

(Maher & Yankelewitz, 2017). Furthermore, 

they underachieve in mathematics and have 

unsuccessful experiences learning higher 

mathematical topics such as algebra (Fuchs et 

al., 2017; Siegler et al., 2012; Torbeyns et al., 

2015). 

Recognizing the fundamental importance 

of fraction knowledge for success in studying 

mathematics beyond arithmetic, in this 

Article, we aim to highlight two contrasting 

theoretical positions of fraction knowledge to 

understand their cognitive and mathematical 

attributes and the challenges they pose. To 

appreciate the two positions, we first examine 

how young learners appropriate natural and 

fractional numbers. From that examination, 

we advance a perspective that the knowledge 

of fractional numbers follows from becoming 

aware and making sense of a quantitative 

relation between the magnitude of two 

quantities, using the psychological 

mechanisms of stressing and ignoring. 

Afterward, focused on the quantitative 

relations, we present a mathematical analysis 

of the magnitude of two quantities. Building 

on the theoretical views of fractions, we 

outline the mathematical and cognitive 

attributes of two models of fraction 

knowledge—partitioning and measuring—

describing their historical and philosophical-

technological origins. Then, we describe 

cognitive consequences of the partitioning 

perspective. Finally, we suggest areas for 

future research aimed at investigating further 

the measuring perspective. 

M O D E L S  O F  F R A C T I O N S  
Before and especially during their first 

seven or eight years of schooling, children 

learn natural, rational, and then integral 

numbers along with the arithmetic of those 

numbers. Concerning natural and fractional 

numbers, how young learners appropriate 

linguistic and semiotic knowledge of them has 

been particularly interesting to researchers in 

fields ranging from anthropology and 

linguistics to mathematics education and 

neurocognitive psychology (see, for example, 

Blair et al., 2012; Chan et al., 2022; 

Chrisomalis, 2015; Davydov & Tsvetkovich, 

1991; Mendes et al., 2004; Rosenberg-Lee, 

2021; Steffe, 2001). Following this interest, 

we reflect on how learners appropriate 

natural numbers and fractions through 

abstraction. We understand appropriation of 

knowledge as a constructive process that 

occurs from social and cultural sources 

through goal-directed and tool-mediated 

actions. Those actions lead learners to 

construct and internalize their version of 

those social and cultural ideas. 

From this perspective of appropriation, 

Davydov and Tsvetkovich (1991) posit 

acquiring natural numbers and fractions 

involves abstracting at two different cognitive 

levels. First, the idea of natural numbers 

entails abstracting from the qualitative 

attributes of objects to their quantity and 

magnitude. Here learners consider a quantity 

as a countable or measurable quality or attribute 

of an object such as its individuality, length, area, 

volume, or weight. From a collection of 

identical or non-identical things, we 

separately contemplate their “objectness” 

and determine how many there are, that is, 
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their magnitude. From the various qualitative 

attributes of objects, learners abstract 

quantity and magnitude at this level and, 

thereby, appropriate counting or natural 

numbers—1, 2, 3, and so on. 

Second, supported by the previous 

appropriation process, Davydov and 

Tsvetkovich (1991) theorize that grasping the 

idea of fractions engages a higher mental 

functioning, an abstraction of an abstraction. 

It involves conceiving a “quantitative 

relationship…between objects, devoid of all 

qualities” (p. 87). At this higher cognitive 

level, the abstraction concerns a quantitative 

relation between abstracted magnitudes 

appropriated at the previous level. 

Specifically, learners abstract a quantitative 

relation between the magnitude of two 

quantities. 

The abstracting act at each of the two 

levels can be described differently and 

address quantifying discrete as well as non-

discrete entities. Gattegno (1970d, 1973) 

posits abstraction’s mechanism as the twin 

mental functionings he terms stressing and 

ignoring. Considering those mental 

functionings, learners can achieve the first 

abstraction level by ignoring the quality of 

individual things in a collection or continuous 

entity and stressing their quantitative 

“objectness” to arrive at a collection or 

entity’s magnitude. At that moment, by having 

counted, they can answer the question, “how 

many?” For the magnitude of a continuous 

entity, learners may have to count the 

iteration of a unit until it reaches, for instance, 

the entity’s length, area, or volume. To arrive 

at the second abstraction level, learners must 

ignore all attributes other than the magnitude 

of two quantities and stress a quantitative 

relation between the magnitudes. Finally, 

they can respond to a comparative question, 

                                                 
1  Natural numbers are defined as the set of non-
negative integers {0,1, 2, 3, … }  or, following Peano’s 
axioms, the set of positive integers {1, 2, 3, … }. Here, we 

“how much?” one quantity is of the other. 

M A G N I T U D E S ’  
Q U A N T I T A T I V E  

R E L A T I O N S  
Quantitative relations between the 

magnitude of two quantities can be additive 

or multiplicative. In the additive case, the 

comparative magnitude of two different 

quantities— 𝑝  and 𝑞 —yields one of two 

relations: depending on whether 𝑝 > 𝑞 or 

𝑝 < 𝑞 , either 𝑝 − 𝑞 =  𝑘  or 𝑞 − 𝑝 = 𝑘 , 

respectively, where 𝑝 , 𝑞 , and 𝑘  are natural 

numbers1.  

In the multiplicative case, the 

comparative relation of two quantities 𝑝 to 𝑞 

means for some 𝑚  and 𝑛 , 𝑛 × 𝑝 =  𝑚 × 𝑞 . 

Therefore, 𝑛/𝑚 ×  𝑝 =  𝑞  and 𝑚/𝑛 ×  𝑞 =

 𝑝 . Consequently, a fraction represents a 

“quotient of two quantities of the same 

dimension, expressed in the same unit” 

(Vergnaud, 1983, p. 162). In other words, a 

fraction describes a multiplicative 

comparison between two commensurate 

quantities of the same kind. That idea is 

encapsulated in its symbolic form, 𝑝/𝑞 , 

composed of two natural numbers. However, 

for some learners, a fraction’s bipartite form 

and infinite equivalent expressions, 𝑛 × 𝑝/

𝑛 × 𝑞 , may belie the idea that its form and 

equivalent expressions represent a single, 

unique magnitude. 

Also significant is the material or 

conceptual relationship of the two quantities 

to each other. In a specific instance, that 

material or conceptual relationship has one of 

two characteristics. Describing the 

characteristics, Vergnaud (1983) notes, 

“either one quantity is part of the other 

(inclusive case) or there is no obvious 

inclusion relationship (exclusive)” (p. 162). 

consider the latter set when referring to the natural 
numbers. 
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The inclusive case is a whole, 𝑞, and a part, 𝑝, 

of it ( 𝑝 out of 𝑞 ), such as this set model 

statement: Aaliyah ate two-thirds of the 

cookies. For an area model, one compares a 

number, 𝑝 , of pizza slices to the number of 

slices, 𝑞, in the whole pizza. 

In contrast, the exclusive case involves 

comparing two distinct quantities, 𝑝  and 𝑞 , 

that have no inclusion relationship (𝑝 to 𝑞). 

For example, the volume of Karma’s luggage 

is three-fifths of Samir’s luggage. The second 

volume, 𝑞, is the unit to which the first, 𝑝, is 

compared. The quantities are of the same kind 

(volume) and compare multiplicatively. As a 

further instance of the exclusive case, 

Davydov and Tsvetkovich (1991) present this 

situation: A student compares two distinct 

objects, sharing length as a common 

quantifiable attribute or quantity, a ruler to a 

table’s side. To compare the objects, the 

student assigns one of the quantities to equal 

one or the unit and measures. For example, if 

𝑛  iterations of the student’s ruler equal the 

table’s side, and she considers the table the 

unit, the ruler is one-𝑛th or 1 𝑛⁄  of the table. 

C O G N I T I V E  A N D  
M A T H E M A T I C A L  

F E A T U R E S  O F  M O D E L S  
I  A N D  I I  

There are subtle yet significant cognitive 

and mathematical differences between the 

two cases. We will enumerate some 

differences but, first, illustrate the two cases. 

The inclusive and exclusive cases are depicted 

respectively in the models in Figures 1 and 2. 

In Figure 1, Model I includes two examples of 

the inclusive case. Model I’s graphics are like 

familiar textbook illustrations of an area and 

a number-line presentation used to introduce 

fractions. The area presentation in Example A 

shows a rectangle divided into seven smaller 

rectangles with two shaded, showing 2/7 of 

the original area. Example B highlights a 

number-line point in green midway between 

two tick marks. As the three tick marks 

equipartition the length between 0 and 1, they 

represent the fractions 1/4, 2/4, and 3/4 ; 

consequently, the green point is 7/8  of the 

distance away from zero. 

 

Figure 1 – Model I, two examples of inclusive 

models for illustrating fractions 
 

  
 

Source: Author’s file. 

 

Figure 2 contains two examples of the 

exclusive case for representing fractions. 

Model II’s graphic examples employ a two-

dimensional representation of Cuisenaire 

rods. A set of Cuisenaire rods constitutes ten 

different-sized rectangular parallelepipeds or 

cuboids; the length of each is a multiple of the 

smallest—a one-centimeter cube. Each size is 

colored uniquely from shortest to longest: 

white, red, lime, purple, yellow, green, ebony, 

chocolate, blue, and orange. In Model II, the 

length of the blue, purple, green, and orange 

rods are respectively equal to 9, 4, 6, and 10 

centimeters (see Figure 3). Example C 

represents the fraction 9/4 or 4/9, depending 

on which rod is considered the unit of 

measure. Similarly, again relative to which 

rod is designated the measuring unit, 

Example D shows the fraction 6/10, 3/5, 

10/6, or 5/3. 
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Figure 2 – Model II, two examples of 

exclusive models for illustrating fractions 

 

 
 

Source: Author’s file. 

 

Figure 3 – Cuisenaire rods 

 

 
 

Source: Author’s file. 

 

We can now enumerate cognitive and 

mathematical differences between the two 

representational models of fractions. Model I 

reveals five cognitive and mathematical 

attributes. First, whether an area, number 

line, or set, the representation is an 

equipartition, discretized quantity. Second, as 

such, it invites counting the individual 

partitions or discrete objects. Third, from the 

learner’s perspective, the whole or unit is 

implicit and predetermined. Fourth, because 

of the previous feature, what is the unit 

fraction, where the numerator equals 1, is 

also predetermined. Finally, a fraction is a 

quantity denoting counts of discrete entities, 

the number of highlighted partitions—

shaded area, tick marks, or individual 

objects—to the total number of partitions. 

Furthermore, aside from those five attributes, 

a salient feature of Model I is that an essential 

mathematical idea—a unit—is treated 

implicitly and, therefore, can evade learners’ 

and teachers’ careful consideration (Ciosek & 

Samborska, 2016; Powell et al., 2022). 

Contrastingly, Model II’s cognitive and 

mathematical attributes engage learners 

explicitly in making decisions about what the 

unit is. Like the previous model, Model II 

comprises five features. First, the 

representation contains two objects with a 

common quantity, such as length (or even 

area, volume, or weight). Second, the quantity 

of one object is considered the unit of 

measure and used to compare the other 

object’s quantity multiplicatively. Third, 

comparing the two objects multiplicatively 

necessitates either estimating or measuring. 

Fourth, measuring requires deciding what 

will be the unit fraction and iterating it to 

determine the measure of the object that is 

not the unit of measurement. Finally, a 

fraction expresses a relation, a multiplicative 

comparison between two quantities of the 

same kind. 

Figure 4 summarizes the contrasting 

cognitive and mathematical features of the 

two fundamental cases of fraction knowledge. 

The first represented the inclusive case, 

which we call the partitioning perspective. 

The second exemplified the exclusive case, 

and we label it the measuring perspective. 

Unlike the partitioning perspective, 

functioning within the measuring perspective 

of fraction knowledge requires deciding 

explicitly which common quantity of two 

objects to focus on and which object’s 

quantity to take as the unit of measure. 

 

Figure 4 – Cognitive and mathematical 

features of two perspectives of fraction 

knowledge 

Source: Author’s file. 
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O R I G I N S  O F  T H E  T W O  
P E R S P E C T I V E S  O F  

F R A C T I O N  K N O W L E D G E  

M e a s u r i n g  P e r s p e c t i v e  
The two perspectives of fraction 

knowledge—partitioning and measuring—

have not only fundamentally different 

cognitive and mathematical features but also 

disparate origins. For example, the measuring 

perspective originates on the African 

continent in ancient Egypt among property 

surveyors. In contrast, the partitioning 

perspective arose in reaction to a 

philosophical movement among professional 

mathematicians and a technological advance. 

The measuring perspective derives from 

ancient African social-cultural practices. More 

than four millennia ago, in Mesopotamian and 

Egyptian cultures, along the Tigris, Euphrates, 

and Nile rivers, with the birth of agriculture, 

the material conditions introduced the need 

to measure quantities of land, crops, seeds, 

and so forth and to record the measures 

(Clawson, 1994/2003; Struik, 1948/1967). 

More than 3400 years ago, to measure land 

distances, ancient surveyors stretched 

knotted ropes in which the length between 

knots represented a unit of measure (see 

Figure 5). When the land distance was not an 

exact multiple of the unit, the need for 

fractional lengths emerged. The lengths were 

a relation representing a multiplicative 

comparison between two quantities: (1) a 

dimension of land, a distance 𝑑 and (2) a unit 

of measure 𝑢, the uniform distance between 

consecutive knots. From the social-cultural 

practice of surveying arose simultaneously 

fractional numbers and geometry 

(Aleksandrov, 1963; Caraça, 1951; Roque, 

                                                 
2 By Charles Wilkinson - This file was donated to 
Wikimedia Commons as part of a project by the 
Metropolitan Museum of Art. See the Image and Data 

2012). Later, ancient Greeks discovered that 

such ratios of lengths were not always 

measurable by a standard unit or 

commensurable (Struik, 1948/1967), leading 

to the discovery of irrational numbers. 

Corresponding to this cultural-historical 

perspective, ontologically, we define a 

fraction as a multiplicative comparison 

between two commensurable quantities of the 

same kind. 

 

Figure 5 – A wall painting2 from the Tomb of 

Menna (TT69) of the Theban necropolis in 

Luxor’s West Bank depicting surveyors 

measuring land with a knotted rope. Menna, 

an ancient Egyptian official, was a scribe and 

an overseer of fields belonging to the 

pharaoh Amenhotep III and the temple of 

Amun-Re (Hartwig, 2021) 

 
Source: Author’s file. 

 

More than 4,000 years ago, ancient 

Egyptians developed written versions of 

fractions. Specifically, to represent fractions, 

they invented two forms (Roque, 2012): 

1. Unit fractions are designated with an 

oval symbol  placed above the 
number 𝑛 to represent what today we 

denote with 
1

𝑛
. 

 

 

Resources Open Access Policy, CC0, 
https://commons.wikimedia.org/w/index.php?curid=
89562438 

https://commons.wikimedia.org/w/index.php?curid=89562438
https://commons.wikimedia.org/w/index.php?curid=89562438
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2. Special fractions, including 1/2, 2/3, 
and 3/4, were represented with 
specific hieroglyphic signs. 

 
 

Since the Egyptian invention of written 

fractions emerged around 1800 BCE, their 

notion and use of fractions have evolved. 

However, it was only in the XVII century that 

mathematicians accepted fractions as 

legitimate mathematical objects like natural 

numbers as they permitted equations of the 

form 𝑎𝑥 =  𝑏 to have solutions, 𝑥 =  𝑏/𝑎, 

without restriction when 𝑎 ≠  0 . 

Furthermore, they provided meaning to the 

division of any pair of natural numbers, 

resulting in a closed domain, an algebraic field 

(Courant & Robbins, 1941/1996). 

Interestingly, the Egyptian notion of a fraction 

as an object representing a multiplicative 

comparison between two quantities persisted 

until, historically speaking, recently. Then, as 

we shall now discuss, the idea of fractional 

numbers emerging from measuring, spurred 

by material conditions, becomes supplanted 

by fractions rooted in a partitioning 

perspective. 

P a r t i t i o n i n g  
P e r s p e c t i v e  

The conditions for the current, dominant 

perspective of fraction knowledge—

partitioning—arose in the first half of the 20th 

century with a part/whole interpretation of 

fractions. The movement from the historical 

origins of fractions in the act of measuring 

two quantities, one considered the unit 

measurement, has two confluent roots, one 

philosophical and the other technological 

(Davydov & Tsvetkovich, 1991; Escolano 

Vizcarra, 2007; Schmittau, 2003). One 

impetus was in reaction to philosophical 

debates among mathematicians. Specifically, 

at the beginning of the 20th century, the 

philosophy of formalism, championed by 

David Hilbert (1862-1943), proposed a 

program to axiomatize mathematics 

completely and consistently (Snapper, 1979). 

At the time, formalists maintained that the 

objects of mathematical thinking are the 

mathematical symbols themselves and not 

any meanings attributed to them (Simons, 

2009). On this point, the following statement, 

attributed to Hilbert, roughly summarizes the 

core position of the formalist project: 

“Mathematics is a game played according to 

certain simple rules with meaningless marks 

on paper” (Rose, 1998). This philosophical 

belief about the nature of mathematics 

permeated mathematical education.  

A consequence of formalism is how 

rational numbers are defined, especially 

fractions (Schmittau, 2003). A formalist 

definition of rational numbers: Rational 

numbers represented as common fractions 

are bipartite symbols that express quotients 

or ratios of two whole numbers, 𝑎/𝑏, such that 

𝑎 and 𝑏 are natural numbers and 𝑏 ≠ 0. In the 

expression, 𝑎/𝑏, 𝑎 is called the dividend or 

numerator, and 𝑏 is the divisor or 

denominator. 

Within mathematics education circles, 

educators understood that the formalist 

definition of fractions was too abstract for 

students. Consequently, they derived a 

pictorial version of the formalist symbolic 

notation designed to aid students’ 

understanding of the numerical quotient 

conception of fractions. As Davydov and 

Tsvetkovich (1991) detail, 
 
psychological factors also had to be 
considered. It was impossible to give fifth 
graders, to say nothing of younger 
students, a purely symbolic outline of the 
principle of division which produces 
fractions. A visual correlate was needed. 
This role was given to the so-called 
division of things, their subdivision into 
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parts, which in the course of instruction 
could be linked relatively easily with 
terms characteristic in defining common 
fractions. Thus, the “visual conception of 
the fraction”…arose completely naturally. 
By rather intricate means, the original 
source of the formation of fractions in the 
history of teaching mathematics-—
measurement—was replaced in didactic 
goals through the substitution of the so-
called “division of things” for the division 
of numbers. Such a conception was used 
widely not only in the upper grades, but even 
in the primary grades-so much so that it was 
natural to connect the isolation of “portions” 
with the child’s experience in dividing objects 
such as apples or watermelons. (pp. 100, 
original emphasis) 

 

The partitioning perspective’s division of 

sets and areas into equal parts, the 

part/whole interpretation, provides a “visual 

correlate” to the formalist definition of a 

fraction as the quotient, 𝑎/𝑏, of two integers 

𝑎  and 𝑏 , where 𝑏  is nonzero. This inclusive 

perspective substituted the historical, 

exclusive view of fractions. The inclusive view 

of fraction knowledge has another source 

related to the instructional goal of supporting 

learners’ understanding. 

Concurrent with the influence of 

formalism, a second source for transitioning 

the teaching of fractions from a measuring 

perspective to a part/whole interpretation 

was a technological innovation for providing 

printed visual aid in textbooks. By the 1930s, 

improvements in printing technology enabled 

book publishers to present two-dimensional 

graphic images in pages of mathematics 

textbooks (Escolano Vizcarra, 2007).  

Before that innovation, textbooks 

explicitly asked students to compare 

magnitudes of objects. Instead, the new 

textbooks presented a single geometric figure 

with an area subdivided into equal parts, and 

students had now to relate the nonsymbolic 

graphic image to symbolic fractional notation. 

Escolano Vizcarra (2007) explains: “The 

exercise proposed by the textbook does not 

refer to any measurement process since 

neither the magnitude nor the unit of 

measurement is made explicit” (pp. 81, my 

translation, added emphasis). It is crucial to 

underscore that the absence of magnitude (a 

quantity) and unit of measurement (a second 

quantity) implies a complete movement from 

an exclusive to an inclusive perspective, and 

the idea of unit shifts from being explicit to 

existing only implicitly. 

Escolano Vizcarra (2007) continues: 
 
The part-whole relationship appears 
because of a gradual process of 
abandoning the meaning of measurement 
with real objects… Consequently, it is a 
didactic resource that arises to avoid 
measurement activities with tangible 
objects, possibly because the 
measurement processes in the classroom 
generate difficulties such as material 
management, control of the diversity of 
results obtained or the appearance of 
interferences with the teaching of the 
Decimal Metric System. (pp. 81, my 
translation, original emphasis).  
 

Thus, it appears that two confluent 

events conspired to supplant the historical 

measuring perspective of fraction knowledge 

with one that emphasizes equipartitioning of 

geometric areas to ground and introduce 

fractional numbers to young learners. The 

first event was the technology for rendering 

2-D images on a printed page and second the 

consequent instructional and material 

neatness of a visual part/whole 

interpretation of fractions both conspired. 

C O G N I T I V E  
C O N S E Q U E N C E S  O F  
T H E  P A R T I T I O N I N G  

P E R S P E C T I V E  
Now that the partitioning perspective is 

dominant, it is essential to review its 



 

84 

copyrigth©2023neuroMATH – Grupo de Pesquisa em Desenvolvimento Neurocognitivo da Aprendizagem Matemática/CNPq – IFS 

cognitive consequences for learners. Three 

implications of the perspective are 

paramount: natural number ideas, numerical 

magnitude, and symbolic notation. Fractions, 

one of rational numbers’ three 

representations, conceptually present 

specific cognitive challenges related to their 

symbolic form. As a mathematical construct, a 

fraction is a sign with a bipartite structure 

composed of two natural numbers. 

Nevertheless, a fraction signifies a single 

number but derives its notational and 

conceptual meaning from its pair of natural 

numbers. 

Notwithstanding their natural number 

components (numerator and denominator), 

fractions have properties that differ from 

natural numbers, such as larger numerals 

signal larger numerical magnitudes. 

Moreover, like the numbers that compose it, a 

fraction represents a magnitude and is 

locatable on a number line. The fraction’s 

magnitude results from a particular relation 

between its components. Specifically, the 

relation is a measure, a multiplicative 

comparison between the two natural 

numbers that compose the fraction, where 

the denominator is the unit of measurement. 

Those characteristics of fractions’ symbolic 

notation and magnitude and how to address 

them epistemologically and pedagogically are 

cognitively challenging and mathematically 

essential. 

According to Kieren (1976, 1980), the 

fractional form of a rational number has five 

sub-constructs or interpretations: 

part/whole, quotient, measure, ratio, and 

operator. Nevertheless, in the early years of 

education, the part/whole interpretation is 

dominant. With this interpretation, students 

build the following three aspects of fraction 

                                                 
3 See Powell, A. B., & Ali, K. V. (2018). Design research 
in mathematics education: Investigating a measuring 
approach to fraction sense. In J. F. Custódio, D. A. da 
Costa, C. R. Flores, & R. C. Grando (Eds.), Programa de 

knowledge: 

 

1. the origin of fractions is in the 
division of things into equal parts; 

2. a fraction is a description of two 
related discrete attributes of an 
object: (a) a collection or a 
discretized whole and (b) a certain 
number of parts of it; and 

3. counting is the procedure of 
naming a part of the division of a 
thing in fractional terms. 

Those aspects of the part/whole or 

partitioning perspective present 

epistemological challenges. Since the view 

engages counting and an additive design, 

students use natural number ideas (concepts, 

properties, and procedures) to make sense of 

fractional numbers and operations. 

Researchers refer to such use as the “whole 

number bias” or “the natural number bias” (Ni 

& Zhou, 2005; Thompson et al., 2021; Van 

Dooren et al., 2015; Van Hoof et al., 2015). 

This bias manifests in Mack’s (1990) 

observation that 6th-grade students (11 years 

old) tend to state that 1/8 is greater than 1/6, 

since 8 is larger than 6. Another evidence of 

the natural number bias occurs when a 

student describes adding fractions as follows: 

“Well, you cross. You add the top numbers 

together and the bottom numbers together,” 

and consequently, the sum of 

1/2+1/3  becomes 2/5 (Mack, 1990, p. 23). 

Furthermore, in this volume, Toledo et al. 

(2022) report on mathematics teachers who 

use a non-generalizable strategy for 

comparing fraction magnitude based on a 

property of natural numbers and  

The natural number bias evidences other 

challenges of learners’ fraction sense 3 . For 

Pós-Graduac ̧ão em Educac ̧ão Científica e Tecnológica 
(PPGECT): Contribuic ̧ões para pesquisa e ensino [The 
Graduate Program in Science and Technology Education 
(PPGECT): Contributions for research and teaching] (pp. 
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example, they have difficulty understanding 

that multiplying two positive fractions can 

produce a result smaller than either of two 

original fractional factors, while division may 

produce a quotient greater than the operands, 

depending on the magnitude of the multiplier 

and divisor (Siegler et al., 2013; Vamvakoussi 

& Vosniadou, 2004). Similarly, learners find it 

difficult to understand that, unlike natural 

numbers, fractional numbers are a dense 

subset of real numbers with an infinite 

collection of fractions between any two 

fractions (Maher & Yankelewitz, 2017; Ni & 

Zhou, 2005; Siegler, 2016; Vamvakoussi & 

Vosniadou, 2004, 2010). Thus, learners also 

fail to recognize that, different than natural 

numbers, fractions have no distinct successor, 

the logical opposite of fractions’ density 

property. 

Further evidence of inadequately 

constructed fraction sense concerns the basic 

idea of units. When operating on fractions, 

learners fail to consider their magnitudes 

relative to a unit. For instance, in 1987, a 

nationally representative sample of more 

than 20,000 U.S. 13- and 14-year-olds (8th 

graders) was asked to estimate—not to 

calculate—the closest whole number for the 

sum of 
12

13
+

7

8
 from among five choices: 1, 2, 

19, 21, or “I don’t know.” Most students chose 

“19” or “21” with “19” the most common 

answer, suggesting that they added the 

numerator or denominator and not the given 

fractions. Only 24% of the students chose the 

correct answer, “2,” indicating that they likely 

estimated each fraction’s magnitude to equal 

1 (Carpenter et al., 1980). More than three 

decades later, Lortie-Forgues, Tian, and 

Siegler (2015) administered the same 

question to a sample of 48 8th-grade (13- and 

14-year-olds) algebra students who attended, 

as the authors describe, “a suburban middle 

                                                 
221-242). Livraria da Física.  for a discussion of fraction 
sense. 

school in a fairly affluent” community. Of their 

sample, only “27% of the 8th graders 

identified ‘2’ as the best estimate of 

12/13+7/8” (p. 202). To add the two 

fractions, most students apparently did not 

sense the reasonableness of attending to the 

fractions’ magnitudes and their relation to a 

unit. 

Another symptom of instructional 

inattention to the unit concept concerns 

naming the fractional part of a pictorial 

model. For example, in Figure 6, Gattegno and 

Hoffman (1976) question whether students 

should be faulted for thinking that the shaded 

regions represent 3/4, 3/2, or even 3/1 

without the task stating what the unit is. 

Depending the unit, any one of the responses 

can be valid. However, instructional materials 

typically present students with one pizza or a 

chocolate bar as the unit. Consequently, 

students have difficulty imagining the unit as 

two pizzas or four sections of an eight-

sectioned chocolate bar. Presented in 

different instantiations, students need to 

experience and reflect on the unit idea, a 

fundamental concept for constructing 

fraction knowledge (Behr et al., 1997; Campos 

& Rodrigues, 2007; Gattegno & Hoffman, 

1976; Lamon, 1996). Equally as essential is 

the unit fraction concept. 

 

Figure 6 – What fraction is represented by 

the shaded parts? 

 

 

Source: Gattegno and Hoffman, 1976, p. IA5 
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From a dialectical materialist 

perspective, everything is in a continual 

process of becoming and ceasing to be, 

nothing is permanent, and everything 

changes and is eventually superseded. It may 

also be the case with perspectives of fraction 

knowledge. However, given the documented 

challenges of a partitioning perspective for 

understanding fractions, further research is 

warranted to understand how an initial 

introduction to fractions from a measuring 

perspective might mitigate those challenges 

and provide a firmer cognitive basis for later 

grasping the other five interpretations of 

fractions within the partitioning perspective. 

C L O S I N G  R E M A R K S  
We want to outline research areas to 

strengthen the understanding of cognitive 

and instructional efficacy of a measuring 

perspective of fraction knowledge. The 

measuring perspective has been theoretically 

and pedagogically investigated by Brousseau 

et al. (2004, 2008) and Davydov and others 

who have adapted the Elkonin-Davydov 

curriculum (Davydov & Tsvetkovich, 1991; 

Dougherty & Venenciano, 2007; Morris, 2000; 

Schmittau & Morris, 2004). Morris (2000) 

investigated the adoption of the Elkonin-

Davydov approach to fraction learning with a 

group of fourth-graders who were learning 

about fractions as numbers. The 

contributions of Morris (Morris, 2000), 

Schmittau and Morris (2004), Brousseau et al. 

(2004, 2008), Davydov and Tsvetkovich 

(1991), and Dougherty and Venenciano 

(2007) to understanding affordances of a 

measuring perspective for fraction 

knowledge are essential. However, they raise 

questions about how this perspective can 

help learners conceptualize and interpret 

fractions represented in continuous and 

discrete models. To work with these models, 

learners must manage measuring, 

partitioning, and unitizing across various 

representational models.  

Cuisenaire and Gattegno (Cuisenaire & 

Gattegno, 1954; Gattegno, 1970a, 1970b, 

1970c) do not stipulate numerical values 

(number names) for each Cuisenaire rod. 

Instead, they code rod lengths with letters 

corresponding to their color names and 

subsequently encode them with numerical 

values corresponding to their measure with 

one rod considered as the unit (of 

measurement). Their approach not only 

corresponds to the historical measuring 

perspective but also to Davydov’s (1962) 

insight about the importance of measuring as 

an initial introduction to numbers: 
 
Such introduction of whole numbers 
greatly facilitates the subsequent 
mastering of fractions—both simple and 
decimal—since the child understands 
from the very outset, first that abstract 
number as a relationship, and, second, the 
value being measured as a homogeneous 
object that may be measured with any 
degree of precision. (p. 35) 
 

Without using Cuisenaire rods, a study 

that employed a measuring perspective with 

prospective teachers was conducted by Bobos 

and Sierpinska (2017). They engaged future 

teachers with Sierpinska’s (2005) model of 

theoretical thinking to reason about 

quantities and conceptualize fractions from 

Davydov and Tsvetkovich’s (1991) 

perspective, where numbers represent 

“measures of how-much-ness of one quality 

relative to another quality of the same kind” 

(Bobos & Sierpinska, 2017, p. 205, p. 205). 

The qualities included ideas like two-ness of 

sets of objects or sweetness or salinity of 

liquids. Their results show the “connection 

between the material [measurement 

situations] and the formal conceptions of 

fractions remains difficult to achieve” (p. 

234). To this point, their implementation did 

not involve using manipulatives applicable to 
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varying situations of visualizing fractions and 

operations. Their prospective teachers had to 

draw models without access to such 

multivalent manipulatives. They may have 

been more preoccupied with selecting and 

drawing appropriate visual representations 

of fractions and fraction operations than 

underlining conceptual ideas. Consistent use 

of multivalent manipulatives may reduce 

learners’ burden to accurately depict their 

representations and provide learners with 

more mental space to entertain the relevant 

fractional ideas appropriately. We suggest 

studies that address this issue by 

investigating one set of manipulatives that 

allow for representing, comparing, and 

operating on fractions.  

Growing body of evidence demonstrates 

that humans have a ratio processing system 

(RPS), a neurocognitive architecture that 

supports comparing the magnitudes of two 

non-symbolic ratios (Geary et al., 2015; 

McCrink & Wynn, 2007; Meert et al., 2013). 

There is evidence of important links between 

non-symbolic, continuous models of ratios 

and fractions (Matthews et al., 2016; Bhatia et 

al., 2020; Kalra et al., 2020). How students use 

their reasoning about non-symbolic 

continuous ratios to think about symbolic 

fractions is an area requiring investigation. 

In this volume, Abreu-Mendoza and 

Rosenberg-Lee (2022) review studies 

building on previous evidence suggesting 

young children work well with nonsymbolic 

representations of proportions, noting that 

those processing skills are also positively 

related to fraction ability in older children 

and adults. Those findings spurred the studies 

of instructional interventions designed to 

leverage nonsymbolic skills and enhance 

symbolic fraction understanding. Their 

review concludes that studies provide 

evidence, small-to-large effect sizes, that 

pairing nonsymbolic and symbolic 

representations of fractions on number lines 

improved fraction skills of low and typically-

achieving students. They suggest fostering 

nonsymbolic skills may be important in 

addressing challenges of fractions knowledge.  

The number line is an inclusive 

representation of fractions. Complementing 

the studies Abreu-Mendoza and Rosenberg-

Lee (2022) reviewed, research is needed to 

examine how pairing an exclusive case of 

nonsymbolic fractions, using appropriate 

manipulative materials such as Cuisenaire 

rods, and symbolic representations of 

fractions shapes learners’ understanding of 

fraction magnitude. 

Finally, other research needed concerns 

teacher enhancing their knowledge from a 

measuring perspective. In wo different 

studies, Alqahtani and Powell (2018) and 

Alqahtani et al. (2022) report changes in pre-

service teachers’ awareness of unit and 

conceptual understanding of fractions. For 

practicing teachers’ professional learning, in 

this volume, Souza and Powell (2022) analyze 

a 12-week Lesson Study project involving 11 

Brazilian teachers learning and designing to 

teach fractions from a measuring perspective. 

Further research is needed to understand 

how teachers revise their teaching practice as 

their implement measuring perspective, 

using appropriate manipulative materials. 
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