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ABSTRACT 
 

This study utilizes the model of didactic moments from the 

Anthropological Theory of the Didactic to examine a university 

student’s praxeological work pertaining to a set of four 

integration tasks. The research focuses on themes related to the 

Fundamental Theorem of Calculus (FTC), which elucidate the 

technological aspects of the employed techniques. By analyzing 

the integral calculus content in the textbook used by the student 

at upper secondary level, the study identifies a potential causal 

relationship between the textbook’s treatment of integration and 

shortcomings in the student’s praxeological equipment. 

Specifically, it is found that an essential element of the FTC—

interpreting area in terms of a function—was missing in the 

textbook’s logos block on integration. Furthermore, the analysis 

reveals a predominance of algebraic techniques over graphical 

ones in the student’s performance of the set of tasks. The 

findings underscore the impact of educational resources on 

students’ praxeological equipment and highlight the need for a 

critical evaluation of these resources using didactic transposition 

analysis. The study advocates developing a praxeological 

organization for integral calculus in order to guide curriculum 

designers and textbook authors, thereby bridging the 

educational gap between secondary and tertiary education and 

enhancing students’ comprehension of integral calculus. 
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I N T R O D U C T I O N  
Infinitesimal calculus, developed 

independently in the late 17th century by 

Newton and Leibniz, was created to solve four 

major problems (KLINE, 1972): (1) given the 

formula for the displacement of an object as a 

function of time, to find its velocity and 

acceleration at any instant (i.e., the study of 

motion); (2) to find the tangent to a curve 

(e.g., used in the study of optics); (3) to find 

the maximum and minimum of a function 

(e.g., max/min distance of a planet from the 

sun); and (4) to find the length of a curve (e.g., 

the distance covered by a planet in a given 

period of time). The first two problems are 

solved by differential calculus and the last two 

by integral calculus, two branches that are 

connected by the Fundamental Theorem of 

Calculus (FTC). Here is a formulation of the 

FTC, paraphrased from Neuhauser (2011, 

p. 295, 302): 

Part 1: If f is continuous on [a, b], then 

the function F defined by  

𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

,      𝑥 ∈ [𝑎, 𝑏] 

is continuous on [a, b] and differentiable 

on (a, b), with F ′(x) = f(x); that is, F is an 

antiderivative of f. 

Part 2: If G is any antiderivative of f on 

[a, b], then 

∫ 𝑓(𝑥)𝑑𝑥 = [𝐺(𝑥)]𝑎
𝑏 = 𝐺(𝑏) − 𝐺(𝑎)

𝑏

𝑎

. 

The first part of this theorem links 

antiderivatives and integrals, and the second 

part provides a method for computing 

definite integrals. 

In the early 19th century, certain 

properties were known about the basic 

concepts of analysis: limits, convergence, 

continuity, derivatives, and integrals. It was 

Cauchy, followed by Riemann and 

Weierstrass, who provided a rigorous 

foundation for the calculus, using the already-

existing algebra of inequalities (GRABINER, 

1983). The construction of the real number 

system was, according to Edwards (1979), the 

most important step in the arithmetization of 

analysis during the late nineteenth century. 

The final loose end was tied up by Weierstrass 

in his purely arithmetic formulation of the 

limit concept involving only real numbers, 

without references to motion or geometry: 

lim
𝑥→𝑎

𝑓(𝑥) = 𝐿  provided that, given 𝜀 >  0 , 

there exists a number 𝛿 >  0  such that 

|𝑓(𝑥) − 𝐿|  <  𝜀  if 0 <  |𝑥 − 𝑎|  <  𝛿 

(EDWARDS, 1979, p. 333).  

The studies done by Radmehr (2016) and 

Thompson and Silverman (2008) show that 

students could apply the FTC for finding the 

definite integral, but they did not have any 

conceptual knowledge about it. From his 

historical reflections on teaching of the FTC, 

Bressoud (2011) draws three big lessons: The 

first lesson is that it is not enough simply to 

introduce integration as a limit of sums. If we 

want students to understand integration as a 

limit of Riemann sums, then they need 

experience working with these sums in 

contexts that lead them to appreciate the 

importance of this definition. The second 

lesson is that, despite our efforts to define 

integration as a limit of sums, the working 

definition of integration for most university 

students will continue to be 

antidifferentiation; this is deeply embedded 

from their high school experience with 

calculus. The third lesson draws on the 

historical development of the concepts of 

calculus in the 17th century. Integration and 

differentiation have two distinct 

conceptualizations, one geometric and the 

other dynamic. The historical lesson is to 

focus first on the dynamic understanding of 
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the FTC—where the function to be integrated 

is viewed as a rate of change and the definite 

integral as an accumulator of this change— 

and then to use this to build the geometric 

realization of the theorem, where the integral 

is viewed as a sum of infinitesimals. 

According to Winsløw (2022), the 

calculus taught at university is the result of a 

didactic transposition process 

(CHEVALLARD, 1991) of the calculus of the 

18th century, complemented by some 

superficial, later theoretical developments. 

He claims that mathematical analysis 

provides clear examples of an increasing 

distance between scholarly knowledge 

(including the knowledge possessed and 

developed by lecturers) and the knowledge 

actually taught. This needs to be considered 

by researchers who set out to study the 

conditions and constraints associated with 

the teaching of calculus.  

The research was conducted at a 

Norwegian university in the mathematics 

course Basic Calculus 1 (MA1101, n.d.) during 

the autumn of 2019, which had 217 students 

from various study programs. Six first-year 

students participated in the research. 

However, in this paper, we focus on the 

performance of one student enrolled in the 

bachelor’s program in physics (BFY, n.d.). 

This student’s performance is compared to 

that of the other five participants, although 

detailed analyses of their praxeological work 

are not included in this discussion.  

We analyze the praxeology built up by the 

selected student related to the performance 

of a set of four integration tasks. The study of 

this praxeological work, carried out right 

after entrance to university, in fact reveals, by 

duality, the conditions and constraints to 

                                                        
1 The letter Q is used to denote the set of tasks, rather than the 

possibly more natural capital T. In the ATD, a capital T is 

reserved for a “type of tasks,” one of the four components of a 

praxeology (CHEVALLARD, 2019), which will be explained 

which the student was subjected and 

therefore the reality of the teaching he had 

received in upper secondary school. In 

focusing on early calculus, the paper 

addresses the concern of Thompson and 

Harel (2021), that students’ preparation for 

calculus in a European context is largely 

unexamined. 

The research question set out to answer 

is the following: 

What is the praxeology constructed by a 

university mathematics student to 

perform a set of integration tasks, t1 to t4, 

and what are the tools available or 

missing from his pre-existing 

praxeological equipment, supporting or 

hindering the performance of these 

tasks?  

The research study is conducted within the 

framework of the anthropological theory of 

the didactic (ATD; CHEVALLARD, 2019, 

2024). In the analysis of the construction of a 

praxeology done by the observed student, we 

use the model of didactic moments 

(CHEVALLARD, 1999).  

T H E  I N S T I T U T I O N A L  
C O N T E X T   

The set of tasks Q solved by the observed 

student (and the five others) was part of the 

topic “integration” in Basic Calculus 1. 1  The 

textbook used was Calculus: A complete course 

(ADAMS & ESSEX, 2018). The topics in the 

course were studied chronologically in the 

following order: limits, continuity, and series; 

differential calculus; inverse functions; 

integral calculus (with focus on analytic 

later. Q highlights the fact that at the foundation of a 

mathematical task, there is a mathematical question. 
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integration); and first order ordinary 

differential equations. 

The teaching unit on integral calculus 

spanned weeks 8 through 12, covering a 

significant portion of the course. According to 

the course description, Basic Calculus 1 

emphasizes rigor, with the fundamental 

theorem of calculus and its applications being 

central themes. 

T h e  d i d a c t i c  s y s t e m  
The didactic system studied, labeled 

𝒮 = (X, Y, Q), consisted of a student X = {x} 

(called John henceforth) and a teacher Y = {y}. 

At the time of data collection, John was two 

weeks into his first semester of a bachelor’s 

program in physics. Previously, John had 

completed the highest level mathematics 

courses, Mathematics R1 and R2, in upper 

secondary school, which covered differential 

and integral calculus, probability, and vector 

arithmetic and geometry, as per the 2006 

Norwegian curriculum (DIRECTORATE FOR 

EDUCATION AND TRAINING, 2006). Opting 

for a more theoretical approach, John 

replaced the mandatory calculus course 

(Calculus 1, n.d.) with Basic Calculus 1 

(MA1101, n.d.) and Basic Calculus 2 (MA1102, 

n.d.) from the mathematics bachelor’s 

program (BMAT, n.d.), citing a preference for 

in-depth study. These decisions led John to 

undertake an additional 7.5 ECTS credits 

beyond the standard requirement for his 

physics program. 

The teacher, y, who is the first author of 

this paper, was responsible for designing the 

mathematics tasks and served as the 

interviewer in the study. At the time of the 

data collection, he was a teacher assistant in 

the Basic Calculus 1 course and a PhD fellow 

at the department where the research was 

conducted. He held a master’s degree in 

mathematics, specializing in numerical 

integration, and had completed pedagogical 

education. Additionally, y had six years of 

experience as a mathematics teacher, mainly 

at the upper secondary level.  

The set of tasks Q, provided for study in 𝒮, 

consisted of these four tasks: 

t1. Integrate the function 𝑓(𝑡) = 𝑡2 + 2𝑡. 

t2. Integrate the function in Figure 1. 

Figure 1 – Graph of function 

 
Source: The authors 
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t3. What can you say about 𝐺′(𝑥) in Figure 2? 

Figure 2 – General function 

 
Source: The authors 

t4. What can you say about 𝐺′(𝑥) in Figure 3? 

Figure 3 – Periodic function 

 
Source: The authors 

The material milieu consisted of 4 tasks, 

each printed on a separate A4 sheet of paper, 

in addition to blank sheets of paper. During 

the interviews, the students could use hand-

held calculators. Use of the Internet or other 

resources was not mentioned, either by y or 

the students.  

T h e  p u r p o s e  o f  Q  
t1 was meant as a warm-up task. t2, t3 and 

t4 were formulated deliberately vague with 

the intention of examining how the students 

were able to tackle unfamiliar tasks related to 

integration. t2 was meant to be similar to t1 in 

the task formulation, but with differences in 

available information. We particularly 

wanted to see how they tackled constructing 

an antiderivative of a (linear) function, being 

given its graph and not its analytic expression. 

Here, the interpretation of a definite integral 

as an area is essential. Would they answer the 

task only based on the information they could 

get directly from the task, or would they make 

any extra assumptions, warranted or not, that 

would help them solve it by a method familiar 

to them? t3 and t4 were also similar, and they 

were designed particularly to test whether 

the students would be able to use the FTC in a 

more theoretical setting. 

The FTC is a theme usually introduced in 

third year of upper secondary school, albeit 

usually not in a rigorous manner. However, 

connecting the integral and the 

antiderivative, and establishing a technique 

for calculating the area under a graph, is 

expected to be familiar to students when they 

enter the first calculus course at the 

university. 

A N A LY T I C  T O O L S  U S E D  
I N  T H E  R E S E A R C H   

Here we explain the tools we have used 

from the ATD, followed by a presentation of 

the reference model we developed for the set 

of tasks Q. 

D i d a c t i c  t r a n s p o s i t i o n  
a n d  p r a x e o l o g y  

The concept of didactic transposition, 

formulated by Chevallard (1991), explores 

how knowledge transforms as it moves from 

the institution where it is produced to the 

institution where it is taught. It addresses the 

changes that occur when scholarly knowledge 

is adapted into knowledge to be taught. 

The scholarly knowledge selected for 

educational curricula undergoes significant 

simplification and restructuring to become 

accessible to students. These modifications 

are necessary due to the conditions and 

constraints of the educational institution, 

such as institutional needs, time constraints, 

students’ prior knowledge and cognitive 

equipment. 

Chevallard’s (1991) framework outlines 

two stages of didactic transposition: external 
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and internal. The external stage involves 

curriculum designers and policymakers 

selecting and transforming knowledge for 

educational purposes. The internal stage 

occurs within the classroom, where teachers 

further adapt the curriculum to their 

students’ needs. 

A critical outcome of didactic 

transposition is the creation of a praxeological 

organization of knowledge. A praxeology in 

the ATD is a unit composed of four 

components (CHEVALLARD, 2019): T, τ, θ, 

and Θ. The letter T denotes a type of tasks; τ 

stands for a technique (or a set of techniques) 

to solve the tasks; θ signifies a technology (i.e., 

a discourse) to describe and explain each 

technique; and Θ symbolizes a theory that 

justifies the technology. T and τ belong to the 

praxis block of a praxeology, whereas θ and Θ 

belong to the logos block. A praxeology 𝓅 is 

thus written 𝓅 = [T / τ / θ / Θ], where 𝓅 is a 

model of the knowledge necessary to solve 

tasks of type T. These praxeologies form the 

building blocks of a praxeological 

organization, which encompasses the entire 

structure of the knowledge to be taught.  

As illustrated by Strømskag and 

Chevallard (2024), didactic transposition 

processes lead to simplified praxeological 

organizations, usually resulting in 

demathematization, where scholarly 

knowledge is stripped of its rigorous 

theoretical underpinnings to be accessible for 

a broader range of students. To address the 

gaps created by didactic transposition, 

Strømskag and Chevallard (2024) propose 

the concept of an archeorganization, which is 

a meta-curricular framework designed to 

retain the core essence of scholarly 

knowledge while making it both accessible 

and viable for teaching. The purpose of an 

archeorganization for a mathematical topic is 

to bridge the educational divide between 

secondary and tertiary education regarding 

that specific topic.  

M o d e l  o f  d i d a c t i c  
m o m e n t s  

To analyze John’s study process, we have 

used the model of didactic moments developed 

by Chevallard (1999). First, however, a 

remark on the use of this model is in place. 

Contrary to what is the case in most 

widespread didactic theories, where a binary 

distinction between teaching and learning is 

taken for granted, in the ATD, what is primary 

is the notion of study where teaching is only a 

possible means to learning (CHEVALLARD, 

2024). In a book published in 1998, written by 

Chevallard, Bosch, and Gascón, aptly titled 

Estudiar matemáticas. El eslabón perdido 

entre enseñanza y aprendizaje [Studying 

mathematics: The missing link between 

teaching and learning], the authors write: 

In the case of school subjects, there is a 

tendency to confuse study activity with 

teaching or, at least, to consider only as 

important those moments of study 

when the student is in the classroom 

with a teacher. It is forgotten then that 

learning, understood as the effect 

pursued by study, does not occur only 

when the student is in the classroom 

with a teacher, nor does it occur only 

during teaching. The study—or didactic 

process—is a broader process which is 

not restricted to, but encompasses, the 

“teaching and learning process.” 

(CHEVALLARD et al., 1998, p. 58, our 

translation) 

Chevallard (2024) emphasizes that the 

model of didactic moments is a model of study 

processes in general, a tool to be used in 

analyzing the students’ activity and in 

particular the students’ role in the 
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institutionalization of knowledge. Garcia et 

al. (2006), Artaud (2020), and 

Strømskag (2021) are examples of research 

studies where the model of didactic moments 

has been used this way. In what follows, we 

draw on Chevallard (1999, p. 249–255) in a 

brief presentation of the model of didactic 

moments. 

The construction of a praxeology ℘ 

centered on a type of tasks T involves six 

“dimensions” called moments of the study 

process that generates the emergence of ℘; 

they are respectively: (1) the moment of the 

first encounter with the type of tasks T—when 

expressly organized, this first meeting may be 

part of a cultural-mimetic problem (e.g., 

meeting the problem by “playing” the 

mathematician, the physicist, etc.) or it may 

be part of a system of “fundamental 

situations” (in the sense of BROUSSEAU, 

2002) or it may be a combination of these 

forms; (2) the moment of the exploration of the 

type of tasks T and of the emergence of a 

technique τ (of performing tasks t of the type 

T)—“it is indeed the development of 

techniques which is at the heart of 

mathematical activity” (CHEVALLARD 1999, 

p. 252, our translation); (3) the moment of the 

constitution of the technological-theoretical 

environment [θ/Θ] relating to τ, when the 

logos part of the praxeology emerges; (4) the 

moment of working on the praxeological 

organization ℘ under development (in order 

to improve both the praxis block and the logos 

block)—this moment of testing the technique 

τ presupposes a corpus of adequate tasks; (5) 

the moment of institutionalization of ℘, the 

purpose of which is to specify the developed 

praxeology—that is, to define which elements 

will be integrated into ℘, and which will not; 

and (6) the moment of the evaluation (of both 

℘ and of a person’s relation to ℘), which is 

articulated at the moment of 

institutionalization (of which it is in some 

respects a sub-moment). Chevallard (1999) 

notes that the order of the different didactic 

moments is in fact largely arbitrary, because 

didactic moments are first of all a functional 

reality, before they become a chronological 

reality. Hence, the word moment in “didactic 

moment” has no temporal meaning. 

A  r e f e r e n c e  m o d e l  f o r  Q  
To analyze the praxeology constructed by 

the observed student, we need a reference 

model that we present here. For t1 through t4, 

the question about what type of tasks they 

are, can be divided into several aspects. First, 

all the tasks are about concepts relating to the 

integral. Further, a connecting theme is the 

Fundamental Theorem of Calculus (FTC). 

More specifically, integration of a quadratic 

polynomial (t1), a linear polynomial (t2), a 

general function (t3), and a periodic function 

(t4). Second, we observe the way each task is 

formulated: t1 and t2 both include tasks of the 

type “Integrate the following function,” 

whereas t3 and t4 are both of the type “What 

can you say about” a given function. 

We expected that the solving of the first 

two tasks would be fairly algorithmic, 

centered on a set of techniques called 

integration, making these tasks suitable for 

exploring what the students understand this 

technique to be. The two most likely 

possibilities are the definite integral, and the 

indefinite integral, understood as the anti-

derivative. The task t2 was also designed 

specifically to induce a dissonance between 

these interpretations. As it is based on a graph 

instead of an algebraic expression, one could 

expect students to consider the possibility of 

interpreting the task as asking about an area, 

and thus also a definite integral. The last two 

tasks are more exploratory in nature, as they 

ask “what can be said about” the given 

functions. We expected that t3 and t4 would 
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perhaps uncover more about techniques that 

involve no obvious (“correct”) algorithms. 

A third aspect is the different modes of 

representations featured in the tasks. Several 

descriptions of modes of representations 

exist (e.g., BRUNER, 1966; DUVAL, 2006). In 

this paper we distinguish between graphical 

and algebraic modes. We also acknowledge 

the importance of ordinary language, which is 

a linguistic mode used in task instructions and 

in explanations and arguments in solutions. 

For that reason, when talking about a “purely 

algebraic” or “purely graphical” mode, 

ordinary language is also involved. To 

illustrate this, in tasks t1 and t2, where the 

functions are respectively represented 

algebraically and graphically, the instruction 

“Integrate the function” uses ordinary 

language to direct the student’s action on the 

mathematical object in question. As for tasks 

t3 and t4, the question "What can you say 

about the derivative?" requires the student to 

articulate their understanding of and 

reasoning about the mathematical object at 

stake, based on the graphical representations 

present in these tasks. 

R e f e r e n c e  s o l u t i o n s  
We can solve the first task easily, using 

antiderivative rules for polynomial functions: 

t1: Apply the antiderivative to arrive at 

∫ 𝑓(𝑡)𝑑𝑡 = ∫ (𝑡2 + 2𝑡)𝑑𝑡 =
1

3
 𝑡3 + 𝑡2 + 𝐶, 

where C is an arbitrary constant.  

The second task can be solved in the same 

way, but not without making some extra 

assumptions about the graph. One such 

assumption is to say that the grid size is 1×1, 

in addition to the assumption of “what you see 

is what you get,” that is, when the graph looks 

linear it is linear. 

t2a: Applying the point-slope formula, we 

get 𝑓(𝑥) =
1

2
 𝑥 + 1 , and by taking the 

antiderivative, we have ∫ 𝑓(𝑥)𝑑𝑥 =
1

4
 𝑥2 +

𝑥 + 𝐶 . We will call these solutions algebraic 

solutions to the tasks. 

As noted, we had to make an assumption 

about the grid size in order to be able to find 

the antiderivative of this function. But would 

it be possible to give a solution to the task 

without making this extra assumption? In our 

opinion, this would be a more principled 

answer to the task, as it assumes that all 

information is already presented. But to do 

this, we need to consider what sort of 

information can be read out of the graph. 

t2b: First, we see that the graph is that of a 

linear function with a negative x-intercept 

and a positive y-intercept. If the straight line 

intersects the x-axis at the point (x0, 0) and the 

y-axis at the point (0, y0), its equation is 

𝑓(𝑥) =
𝑦0

−𝑥0
(𝑥 − 𝑥0). Suppose we do not know 

how to calculate an antiderivative of f. From 

the FTC (Part 1), we have that ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑥0
 is an 

antiderivative of f, which is equal to the area 

of the right-angled triangle whose vertices are 

(x0, 0), (x, 0) and (x, f(x)). This area is equal to 
1

2
(𝑥 − 𝑥0)

𝑦0

−𝑥0
(𝑥 − 𝑥0) =

𝑦0

−2𝑥0
(𝑥2 − 2𝑥0𝑥 +

𝑥0
2) =–

𝑦0

2𝑥0
𝑥2 + 𝑦0𝑥 −

1

2
𝑦0𝑥0, which is one of 

infinitely many antiderivatives of f. Hence, the 

indefinite integral is ∫ 𝑓(𝑥)𝑑𝑥 = –
𝑦0

2𝑥0
𝑥2 +

𝑦0𝑥 + 𝐶, where C is any constant.  

Also note that, whereas we did not 

change the mode of representation during the 

solving of t1, we did so in t2. It is possible to 

find solutions to t2 using only geometric 

arguments, either by considering the 

different area elements, in a technique similar 

to Riemann integration, or by using slope 

fields (e.g., as presented by THOMAS & 

FINNEY, 1996). However, due to space 

limitation and of curricular reasons 

respectively, we will not present these 

techniques here. 

t3 and t4: The tasks t3 and t4 are both quite 

flexible when considering what sort of 
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statements can be accepted as solutions. 

Anything ‘interesting’ that “can be said about 

𝐺′(𝑥)” could be a solution. Particularly, since 

the only difference between t3 and t4 is that t4 

specifies that f(t) is periodic, any solution to t3 

will also technically be a solution to t4. 

However, since both tasks are based on 

describing a function, defined through a 

definite integral, using the FTC is reasonable.  

t3: From the FTC (Part 1), we have that, for 

a continuous function f on an interval [a, b], 

the function 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
, defined on the 

same interval, is an antiderivative of f—that is, 

𝐹′(𝑥) = 𝑓(𝑥). We have 𝐺(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥+1

𝑥−1
=

∫ 𝑓(𝑡)𝑑𝑡 + ∫ 𝑓(𝑡)𝑑𝑡
𝑥+1

𝑎

𝑎

𝑥−1
= ∫ 𝑓(𝑡)𝑑𝑡

𝑥+1

𝑎
−

∫ 𝑓(𝑡)𝑑𝑡
𝑥−1

𝑎
= 𝐹(𝑥 + 1) − 𝐹(𝑥 − 1) . Because 

of the linearity of the differentiation operator, 

we have 𝐺′(𝑥) = 𝐹′(𝑥 + 1) − 𝐹′(𝑥 − 1) =

𝑓(𝑥 + 1) − 𝑓(𝑥 − 1). 

t4: We know from t3 that 𝐺′(𝑥) = 𝑓(𝑥 +

1) − 𝑓(𝑥 − 1). Given that 𝑓(𝑡) = 𝑓(𝑡 + 2) for 

all 𝑡, we get 𝑓(𝑥 − 1) = 𝑓(𝑥 − 1 + 2) = 𝑓(𝑥 +

1).  Hence 𝐺′(𝑥) = 𝑓(𝑥 + 1) − 𝑓(𝑥 − 1) =

𝑓(𝑥 + 1) − 𝑓(𝑥 + 1) = 0.  So, when 𝑓(𝑡)  is 

periodic with period 2, we know that 𝐺′(𝑥) 

will always be equal to 0. 

We see that for all four tasks, the 

technology θ of the techniques used is based 

on the FTC. For t1 and t2, we used that the 

processes of integration and differentiation 

are inverses of one another; for t2b and t3, it is 

essential that the integral of f with a variable 

bound of integration, ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
, is an 

antiderivative of f. Further, for t3, we used the 

additive property of definite integrals. t4 is 

just a special case of t3, where we used the 

periodicity of f.  

M E T H O D S  U S E D  

D a t a  c o l l e c t i o n  a n d  
c a s e  s e l e c t e d  

The six students participating in the 

broader study were recruited in the 

beginning of the semester, where they could 

sign up voluntarily as participants. Before 

they agreed to take part, it was made clear 

that participation in the study would not 

influence their final grade in the course. 

An adapted form of task-based interviews 

(MAHER & SIGLEY, 2020) was employed as 

data collection strategy. The students were 

interviewed twice while working individually 

to solve tasks on integration. The first 

interview was done before the introduction of 

integral calculus in the lectures, and the last 

one was done some time after integral 

calculus had been taught, but before the exam. 

The interviews, conducted in a small meeting 

room, were video-recorded and transcribed 

for subsequent analyses. 

Both interviews were divided into three 

parts. The first part involved asking general 

questions about the student’s background. In 

the second part, students were encouraged to 

verbalize their thinking while solving tasks 

presented in written form. After attempting to 

solve each task, the next one was introduced 

until all tasks were addressed. The 

interviewer only intervened to prompt the 

student to speak if they were silent for a 

prolonged period. The third part consisted of 

a more open discussion of the tasks. 

The second interview was also divided 

into three parts. The first part focused on the 

student’s perceived development during the 

course, while the last two parts mirrored the 

first interview. Interview 1 included tasks t1 

through t4, whereas Interview 2 included 

tasks t3, t4, and a fifth task not discussed in 

this paper. 

We selected John’s praxeological work on 

Q as a focal case. This choice was influenced 

by his distinctive use of techniques and 

argumentation during the interviews, where 

he displayed a proficiency in tackling complex 
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and unconventional problems. As mentioned 

in the introduction, the analysis of John’s case 

is informed by the performances of five 

additional participants. While these 

contributions enhance our discussion, they 

are not detailed in this paper. 

M e t h o d s  o f  a n a l y s i s  
The chapter on integration in the 

textbook used by John in Grade 13 has been 

examined through a partial praxeological 

analysis, discerning the praxis and logos 

blocks of the chapter’s exposition. Although 

presented first, the textbook analysis was 

conducted in response to our initial findings 

from the analysis of the student’s 

praxeological work.  

The analysis of John’s praxeological work 

was conducted in two steps. The first step 

involved constructing a flowchart of the 

solving process for each task, including the 

different subtasks that emerged. This began 

with observing how John interpreted the task, 

noting all possible interpretations he 

mentioned. Subtasks were then identified and 

organized into a flowchart to display their 

dependency structure. The relative temporal 

ordering throughout the interview was 

represented by numbering the nodes in the 

flowchart. Only steps explicitly identified by 

John, such as expressing the need to perform 

a certain action or testing alternative 

solutions, were considered subtasks. 

In the second step, the developed 

praxeology was examined, using the 

flowcharts to achieve three goals. First, the 

flowcharts mapped out the argument 

structure, which is crucial for examining the 

logos of the praxeology. For example, the 

structural part of a flowchart illuminated how 

a given technique was justified. Second, by 

                                                        
2 Figures and “boxes” with red frames taken from this textbook 

are reproduced with permission from the publisher, Aschehoug. 

identifying subtasks, potential connections to 

other praxeologies were revealed. Third, the 

flowcharts highlighted different didactic 

moments more clearly. For instance, the 

moment of the first encounter was 

characterized by how John understood the 

task’s requirements, while the moment of 

constituting the technological-theoretical 

environment could be observed in the 

justifications of techniques. Additionally, the 

exploration of types of tasks was evident 

when there were multiple interpretations or 

when tentative answers were presented and 

validated. 

The following analysis is based on 

transcripts of video-recordings of John’s 

solutions to tasks t1 through t4. 

I N T E G R A T I O N  I N  A  
T E X T B O O K  A N A LY Z E D  

Here, we present a partial praxeological 

analysis of the main elements of integration 

as outlined in Matematikk R2 (HEIR et al., 

2016)2, the textbook used in the mathematics 

course taken by John in Grade 13. This is 

relevant since the textbook brings to light an 

important aspect of the reality of the teaching 

John had received before entering the 

university—this informs about the conditions 

and constraints to which he was subjected 

during the praxeological work on Q. 

Chapter 1 in the textbook is titled 

“Integration” and consists in three 

subchapters: “Definite Integral,” “Indefinite 

Integral,” and “Definite Integral by 

Antidifferentiation.” In the first subchapter, 

the authors start by introducing area as a 

definite integral: Let f be a continuous 

function with f(x) ≥ 0 on the interval [a, b]. 

Then ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is equal to the area of the 

All figures are made by Eirek Engmark at “Framnes Tekst & 

Bilde AS.” 
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region bounded by the graph of f, the x-axis, 

and the lines x = a and x = b (see Figure 4).  

Figure 4 – Area as definite integral 

 
Source: Heir et al. (2016) 

This is followed by sections on: 

interpretation of the area under the graph of 

a function; the sign of the definite integral 

depending on the area being above or below 

the x-axis; and areas between two graphs. 

Then follows a more formal definition of the 

definite integral, that is, the definite integral 

as the limit of a staircase sum. The authors 

start with a continuous function f on the 

interval [a, b], where f(x) ≥ 0. Figure 5 is used 

to illustrate two partitions (n = 10 and n = 50) 

of the region bounded by the graph of f, the x-

axis, and the lines x = a and x = b, where the 

width of the rectangles (i.e., the mesh width of 

the partition) is given by ∆𝑥 =
𝑏−𝑎

𝑛
. 

Figure 5 – A region partitioned into 

rectangles using two different mesh widths 

 
Source: Heir et al. (2016) 

It is then explained that the area of the 

colored region is given by the sum of the areas 

of rectangles: 𝑓(𝑥1) · ∆𝑥 + 𝑓(𝑥2) · ∆𝑥 + ⋯ +

𝑓(𝑥𝑛) · ∆𝑥 = ∑ 𝑓(𝑥𝑖) · ∆𝑥𝑛
1 , where, for each 

rectangle, xi is chosen so as to give the least 

value of f(xi). This sum is called a lower 

staircase sum for f. It is then argued that when 

the mesh width of the partition tends to zero, 

the staircase sum tends to the area of the 

region in question. Now, the definite integral 

of f from a to b is defined as the limit of the 

lower staircase sum as n tends to infinity, as 

symbolized in Figure 6.   

Figure 6 – Definition of definite integral as 

the limit of a sum 

 
Source: Heir et al. (2016) 

The second subchapter, titled “Indefinite 

integral”, starts with an example, pointing out 

that the derivative of x2 is 2x and, further, that 

x2 is called an antiderivative of 2x. The authors 

go on to comment that, because the derivative 

of a constant is 0, the derivative of 𝑥2 +

5, 𝑥2 − 8 and 𝑥2 + √3  is 2x as well. This 

observation is generalized by (𝑥2 + 𝐶)′ = 2𝑥, 

with C ∊ ℝ, after which they conclude that “x2 

+ C are all antiderivatives of 2x”. The 

operation that involves finding the function 

when knowing its derivative is introduced as 

antidifferentiation, and a generalization of the 

given example is recapitulated in Figure 7: “If 

F ′(x) = f(x), we say that F is an antiderivative 

of f. All antiderivatives of f are then given by 

F(x) + C.” 

Figure 7 – Definition of antiderivative 

 
Source: Heir et al. (2016) 

Next, the authors notify that anti-

differentiation of a function is usually called 

integration of the function, after which the 

notions of indefinite integral, integrand, and 

integration constant are introduced through 
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the same example used above: ∫ 2𝑥𝑑𝑥 = 𝑥2 +

𝐶. It is concluded that an indefinite integral is 

therefore all antiderivatives of the integrand, 

a definition symbolized thus (displayed in 

Figure 8): ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶 , where 

𝐹′(𝑥) = 𝑓(𝑥) and C ∊ ℝ. Note the vagueness 

of the definition; it is not clear from the 

symbolic notation whether the indefinite 

integral is the set of antiderivatives or 

whether it is any of the antiderivatives. (After 

this follows a presentation and justification of 

integration rules.) 

Figure 8 – Definition of an indefinite integral 

as all antiderivatives of the integral 

 
Source: Heir et al. (2016) 

We notice that what is displayed in 

Figure 7 can be seen as a denaturation 

resulting from the didactic transposition 

process that the notion of antiderivative in 

the textbook has undergone: the first part of 

the FTC (as presented in the introduction) has 

been transformed into a definition of an 

antiderivative without including the 

necessary condition about its nature—that 

the antiderivative is ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
, a function 

referred to in some university textbooks as 

the area function (e.g., EDWARDS & PENNEY, 

2002; BRIGGS & COCHRAN, 2011). In what 

follows, we will examine the consequences of 

this denaturation when it comes to the logos 

of calculating definite integrals by 

antidifferentiation. Before that, however, it 

can be noted that the very notion of indefinite 

integral is problematic also in university 

textbooks. The common notation for an 

indefinite integral of f with respect to x is 

∫ 𝑓(𝑥)𝑑𝑥, being defined as all antiderivatives 

of the function f(x). In A Comprehensive 

Textbook of Classical Mathematics, written by 

Griffiths and Hilton (1970), the authors deal 

with the indefinite integral in quite an 

elaborated way (see Chap. 30, pp. 495–497). 

For instance, the indefinite integral of f is by 

definition the set of all primitives (i.e., 

antiderivatives) of f and is for historical 

reasons denoted by ∫ 𝑓(𝑡)𝑑𝑡 . They explain 

further that “the particular primitive G such 

that G(a) = 0 is called the definite integral of f 

and denoted by 𝐺(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
” 

(GRIFFITHS & HILTON, 1970, p. 495). 

Neuhauser (2011), for her part, explains that 

the symbolic notation ∫ 𝑓(𝑥)𝑑𝑥 is a 

“convenient shorthand” for ∫ 𝑓(𝑡)𝑑𝑡 + 𝐶
𝑥

𝑎
, 

where C is a constant (p. 299).  

In the last subchapter on integration in 

Matematikk R2, titled “Definite Integral by 

Antidifferentiation,” the authors start with a 

linear function, f(x) = 2x + 3, and compute the 

area between the graph of f and the x-axis 

between x = 0 and an arbitrary x-value greater 

than 0 (see Figure 9).  

Figure 9 – The area of a trapezium with 

variable distance between parallel sides 

 
Source: Heir et al. (2016) 

The bounded region is described as a 

trapezium with parallel sides of lengths f(0) 

and f(x), separated by a distance x. Using the 

trapezium area formula, the area function F is 
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derived as 𝐹(𝑥) =
(𝑓(0)+𝑓(𝑥))·𝑥

2
= 𝑥2 + 3. Then 

an example calculates the area from x = 2 to 

the upper limit of x = 5. It is shown that the 

area A of the trapezium in this case is given by 

A = F(5) − F(2) = 40 − 10 = 30. This calculation 

ties back to the definition of area as a definite 

integral presented in the first subchapter, 

leading to the conclusion that the area A 

equals the definite integral of f(x) from x = 2 

to x = 5, which is equal to F(5) − F(2). 

There are no properties or notation 

implying that the area function F for the 

function f in question is 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡,
𝑥

𝑎
 for 

a continuous function f on a closed interval 

[a, b]. What the textbook, without further ado, 

is drawing on—that the area function is an 

antiderivative—is in fact Part 1 of the FTC 

presented in the introduction of this paper. 

This constitutes a missing link in the textbook 

between the notions of definite and indefinite 

integrals. That the area function is an 

antiderivative does not belong to the logos of 

the type of tasks which involves evaluating a 

definite integral by finding an antiderivative 

and evaluating the difference between the 

values of this antiderivative at the endpoints 

of the interval in question. The preceding 

elaboration of the particular trapezium is 

used as a generic example to introduce and 

explain the second part of the FTC: The 

authors ask the reader to notice that 𝐹′(𝑥) =

𝑓(𝑥) and claim that this means that the area 

function F is an antiderivative of f. They assert 

further that this connection between the 

definite integral and an antiderivative, called 

the Fundamental Theorem of Calculus, turns 

out to apply generally. This result is 

presented symbolically, as shown in 

Figure 10. The authors do not provide a 

reference to, or mention the need for, any 

proof of the theorem. The presentation ends 

with a demonstration of the fact that the 

simplest antiderivative—the one without the 

constant C—can be used when evaluating 

definite integrals, since the constant will be 

cancelled anyway when the difference 

between the values at the endpoints of the 

interval is calculated.   

Figure 10 – Technique for evaluation of a 

definite integral using an antiderivative 

 
Source: Heir et al. (2016) 

We have examined the treatment of 

integral calculus in two other Grade 13 

textbooks for the same mathematics course, 

Sigma R2 (SANDVOLD et al., 2015) and 

Sinus R2 (OLDERVOLL et al., 2015). They have 

quite similar presentations as that in 

Matematikk R2 analyzed here, and they have 

the same missing link between the definite 

integral and indefinite integral as 

demonstrated here. We will see how this 

deficiency likely plays a role in explaining 

John’s struggle with t2, where construction of 

an antiderivative from an area is central (see 

t2b in “Reference solutions”).  

A N A LY S I S  O F  J O HN ’ S  
P R A X E O L O G I C A L  W O R K  

John successfully arrived at the reference 

solution to t1 and the least general solution to 

t2 during the first interview, although he 

made an error with the coefficient in t2 

(Transition T7 → L7 in Figure 11). While 

interpreting the tasks as finding the indefinite 

integrals of the functions is valid, as outlined 

in the reference model, John also considered 

alternative interpretations. Specifically, when 

solving t2, he proposed that the task could 

involve examining the area under the graph. 
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T h e  t e c h n o l o g i c a l -
t h e o r e t i c a l  d i m e n s i o n   

Solution to task t1: Solving the first task 

proved to be no difficulty for John, as can be 

seen from the following excerpt.  

John: Yes, this one is so easy that for this 

one I can really just use a normal 

algorithm. So, then I would really just 

have written that the integral of 𝑓(𝑡) , 

then, would be equal to…, I mean since it 

is inverse integration..., no inverse 

differentiation, this would be, eh… 
1

3
𝑡3 + 𝑡2 + 𝐶. 

John’s solution to task t1 involved finding 

the antiderivative of a polynomial using a 

linear, algorithmic method, demonstrating a 

well-established praxeology centered on 

integrating polynomials. He recognized this 

method as the inverse of differentiation, 

linking it effectively to the praxeology of 

differentiation. John described the task as 

straightforward, indicating his proficiency 

with the technique, a pattern consistent with 

other students in the study. 

Although the task alone does not fully 

explore all didactic moments, it showcases 

John’s evaluative and explanatory 

understanding. To gain a comprehensive 

picture, it is essential to analyze how this 

solution technique compares to the approach 

taken in t2, which has a similar structure. 

A n  i n i t i a l  e x p l o r a t i o n  
o f  a n  u n u s u a l  t a s k  

Task t2 did not seem to pose a significant 

difficulty for John, though it required more 

effort than task t1. He began by attempting to 

interpret the meaning of integrating the 

function (see Figure 11). 

Here is the first major difference between 

t1 and t2. John mentions two ways of 

interpreting the task, compared to only one in 

t1, and contrasts “assigning units” with 

thinking about it “more as an area”: 

John: Here, the first that I think of is, 

eh…, it’s like… the units here [points to 

the graph]. Should I assign units myself, 

or should I think about it more as an 

area? 

These two alternatives go exactly along 

the lines suggested in the reference model. 

John did however not follow the area 

interpretation, but the episode clearly shows 

a conflict between the two interpretations, 

which was not present in t1. The choice of 

interpretation of the concept of integration 

seems therefore related to the mode of 

representation used in the task. After 

deciding that integration also here means 

finding the antiderivative of the function, he 

prepares for an algebraic solution by 

changing the register from a graphical to an 

algebraic representation. 
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Figure 11 – John’s solution to t2 

 
Source: The authors 

A t t e m p t  t o  s o l v e  t 2  

John started by assuming that the scale of 

the coordinate system is 1×1. Using the graph 

to find the inclination and y-intercept of the 

graphed line, he found an expression of the 

function. For the rest of the solving process, 

he used algebraic techniques. Notably, John 

did not remember the point-slope formula for 

linear functions, but redeveloped it by 

remembering that the inclination can be 

written as 𝑚 =
𝑦1−𝑦0

𝑥1−𝑥0
, and rewrote it on the 

standard form 𝑦 = 𝑚(𝑥 − 𝑥0) + 𝑦0, where 𝑦1 

and 𝑥1 are renamed to 𝑦 and 𝑥. Using this, he 

found the expression 𝑦 =
1

2
𝑥 + 1  that he 

integrated and then arrived at the (incorrect) 

solution ∫ 𝑦𝑑𝑥 = 𝑥2 + 𝑥 + 𝐶  instead of 

∫ 𝑦𝑑𝑥 =
1

4
𝑥2 + 𝑥 + 𝐶 , perhaps because he 

read 2 x instead of 
1

2
𝑥 . John then considered 

whether he could find a value for C, but quite 

quickly saw that it was not possible, 

something which also points at a connection 

between the representation he used and the 

interpretation of the task: 

John: And you see here at once that C 

must be… no, actually you don’t. You 

need initial values for that, so… no… 
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That would be my answer to that task. 

But it… it is a very loose task since you 

don’t have anything really defined… 

what, how big… and so on. But I guess it 

will… so the problem here is that… let’s 

say that this here is one half [he points 

to the point on the y-axis previously 

marked with 1], and this one here is one 

[he points to y = 2], then you would have 

a completely different slope. And you 

would get a completely different result 

then. You can also, of course, calculate 

the area under the graph. But that will 

be a definite integral [our emphasis]. So, 

it depends on what you are looking for. 

Well, I think I’m done with it then. 

In t2, John experiences a first encounter 

with the problem. Although he had dealt with 

graphical representations of functions 

previously, this specific task was new to him. 

His initial uncertainty and exploration of two 

potential interpretations, pondering whether 

the task involved calculating an area or 

determining an indefinite integral, illustrate 

his unfamiliarity. He noted that his approach 

“depends on what [the teacher] is asking 

about,” signaling his attempt to discern the 

rules of the task. While John had to rediscover 

the technique for algebraically expressing the 

function from the graph, finding the 

antiderivative was comparatively straight-

forward. This points to an emerging 

technique of algebraically representing a 

function from a graph prior to integrating, 

which could help in bridging the techniques 

developed in t1 and t2 and in forming a local 

praxeology out of the two point-praxeologies 

centered on these tasks. 

When we examine t1 and t2 together, we 

also see a few patterns emerging. First, there 

was a strong preference for interpreting t2 as 

being about an indefinite integral, similarly to 

t1, instead of a definite integral. Further, John 

interpreted the task as being more specific, 

rather than more general, particularly as he 

followed the reference solution to t2a, rather 

than the one to t2b. In addition, although both 

graphical and algebraic techniques were 

attempted, John seemed unable to use the 

graph directly in exploring t2. What John 

declared in the excerpt from the transcript 

above, suggests that a definite integral 

measures an area, and its value depends on 

the units chosen, but, according to John, the 

calculation of an area would not be suitable 

because it would only ever give us the value of 

a definite integral even though we were trying 

to determine an “indefinite integral.” What 

John seems to be saying in this case is 

(partially) wrong, a claim we substantiate by 

the reference solution to t2b. His erroneous 

inference is likely caused by the missing link, 

∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
, between the definite integral and 

the indefinite integral, which we identified in 

the textbook he had used in Grade 13. In 

John’s conception of integration, area is a 

number, not a function. This might explain his 

praxeological shortcoming, as suggested by 

the utterances quoted above. 

A t t e m p t  t o  s o l v e  t 3  

While solving t3, John did start with a 

graphical technique when illustrating the 

integration area on the abscissa axis in a 

coordinate system (see L1 in Figure 12). 
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Figure 12 – John’s solution to t3 

 
Source: The authors 

But the way John seemed to interpret the 

task, to calculate the definite integral 

∫ 𝑓(𝑡)𝑑𝑡
𝑥+1

𝑥−1
, indicates a more algebraic 

approach. John continued by focusing on the 

task of connecting the derivative and the 

integral: 

John: Eh… the derivative of 𝐺(𝑥) will be, 

I mean … Now, wait a bit. I have to think 

a bit here. If the integral of 𝑓 is 𝐺, then 

the derivative of 𝐺 must be 𝑓… of t. The 

problematic part here is that this is x, 

and then this is t. I didn’t notice that 

until now. Those are two different 

variables. 

This shows first a refocusing on algebraic 

aspects of the task: the focus on the presence 

of two different variables in the two functions, 

and the focus on the connection between 

integrals and derivatives as being somehow 

opposites of each other, although the exact 

nature of this “oppositeness” is unclear. It 

seems here that John has not been exposed to 

the difference between bound and free (or 

“dummy”) variables. Once again, the 

observation made reveals aspects of the 

teaching provided in upper secondary school. 

But it also shows the point where John 

discovered that his initial approach might 

have some limitations. This prompted an 

exploration of what different alternatives he 

had. The result from the FTC, that calculating 

an integral is the opposite of calculating a 

derivative, is dependent upon the integral 

involved being an antiderivative, while in t3 

the integral is a definite integral with variable 

limits of integration. This seems to be what 
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was troubling John. After having previously 

suggested that 𝐺′(𝑥) = 𝑓(𝑡), he continued to 

examine the consequences of that idea: 

John: Wait a bit. The only thing that will 

happen is that [Inaudible] If I write like 

this, then, that 𝐺(𝑥) … [Writes down 

𝐺(𝑥) = ∫ 𝐺′(𝑥)
𝑥+1

𝑥−1
] ... and that must be 

equal to… No, or yes. It must be equal to 

something like this then. 𝐺 … of 𝑑𝑥 

[appends 𝑑𝑥  to the expression that he 

just wrote.] Or I don’t know if this is 

correct. [Crosses over the integration 

limits.] This has to be an indefinite 

integral then. 

What John attempts, and more 

importantly what he does not attempt, 

suggests that the teaching he had received did 

not emphasize much the additivity of definite 

integrals, which we used in the reference 

solution to t3. John did not arrive at the 

reference solution, although he was able to 

see that the result he tried to use did not apply 

to definite integrals but to antiderivatives. 

A t t e m p t  t o  s o l v e  t 4  

The task t4 introduced the extra 

constraint that 𝑓(𝑡)  is supposed to be 2-

periodic. In the beginning, John started by 

recalling what a periodic function is. He ended 

up by presenting the archetypical examples of 

sine and cosine functions. After this, he tried 

to use the additivity of definite integrals in 

rewriting the integral as a sum of two 

separate integrals, but the expression he 

arrived at, 𝐺(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
1

𝑥
+ ∫ 𝑓(𝑡)𝑑𝑡

𝑥

−1
, 

was not correct. (A correct formulation would 

be ∫ 𝑓(𝑡)𝑑𝑡
𝑎

𝑥−1
+ ∫ 𝑓(𝑡)𝑑𝑡

𝑥+1

𝑎
; refer to the 

section “Reference solutions”) This is a very 

telling mistake. Second, it also shows that, 

although he had some familiarity with the FTC 

from upper secondary school, he had trouble 

seeing how it could be applied in a new 

situation. Having variable integration limits 

seems to have made it difficult for him to 

interpret the integration area correctly. He 

did, however, manage to identify that this was 

at the heart of the challenge. He saw that there 

were two variables in the expression, and 

thereby identified the need for a technique 

which he tried to discover. But as seen in his 

examination of t3, John gave up on the task at 

this point. 

One of the things John did manage to say 

about the problem, was that the integral of a 

periodic function would still be a periodic 

function. His explanation was based on his 

prior knowledge of derivatives. It is not 

rigorous, however, and mainly based on a 

paradigmatic example: It is therefore a 

mathematical hypothesis based on the 

examples known to him. This is part of the 

praxeological work, even if it does not 

constitute a proof. 

John: The function is periodic, and had 

there been an x there, then one could 

have said that the derivative is also 

periodic. Right? If it were a sine 

function, for example. That one is what 

we call periodic, I guess. And then the 

derivative of sine will be cosine, of 

course, which is shifted. 

C o m p a r i s o n  b e t w e e n  
I n t e r v i e w s  1  a n d  2  

In the second interview, John was 

presented with t3 and t4 again. It is not feasible 

to present a detailed analysis of this 

interview, but some comparison to how he 

solved t3 and t4 is warranted. In this 

interview, he managed to solve task t3 but not 

t4. While solving t3, he arrived at the correct 

conclusion that 𝐺′(𝑥) = 𝑓(𝑥 + 1) − 𝑓(𝑥 − 1). 

The key technique he used was to define a 

new function 𝐹(𝑡) , such that 𝐹′(𝑡) = 𝑓(𝑡) . 

This allowed him to apply the FTC to arrive at 
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the partial answer 𝐺(𝑥) = 𝐹(𝑥 + 1) − 𝐹(𝑥 −

1).  He further identified this technique of 

defining a new general function, and working 

on that, “as if it was a specific function”, to be 

the key to why he was able to solve the task 

this time. 

John also applied the chain rule when 

differentiating the function 𝐺(𝑥) . Although 

being redundant in this case, it is not a 

mistake, and would be necessary if the limits 

of integration were different. But it does give 

some hints about the developing praxeology. 

Although the techniques seemed to be known 

to John, and he had gained some experience, 

compared to the first interview, the 

knowledge about when certain parts of the 

technique are necessary or not, was lacking. 

So, whereas John was in the process of 

exploring the type of tasks presented in the 

first interview, he now seemed to be working 

on the praxeological organization, and on the 

institutionalization. He had the techniques at 

his disposal, and could reasonably use them 

to solve the task, but the efficient use of them 

was not yet fully developed. His own 

explanation why he managed to solve the task 

in the second interview, was that he had more 

experience in defining unknown and general 

functions to examine problems like this. This 

indicates that John now seemed to see the 

concept of function more as a mathematical 

object, instead of the algorithmic view seen in 

the first interview. 

J o h n ’ s  t e c h n i q u e s   
First, we see a strong prevalence of 

algebraic techniques in all four tasks, 

indicating that when John uses graphs and 

graphical techniques, he seems to do so 

mainly for illustrative purposes. In addition to 

the graph that was part of t2, he only made 

two other graphical illustrations, both as part 

of solving t3. Notably, he did not illustrate the 

periodic function asked for in t4. 

Second, the connection between the 

derivative and the integral seems particularly 

strong, and especially as an explanatory 

factor in reasoning about why the techniques 

John applies work. This is the case both in t1, 

where he uses it to explain why the algorithm 

of integrating a polynomial works, and in t3, 

where it leads to the erroneous first attempt 

at a conclusion that 𝐺′(𝑥) = 𝑓(𝑡). This leads 

us to believe that the important connection 

between the derivative and the integral is a 

complex part of the technological-theoretical 

link in a praxeology of integration. 

Understanding the precise nature of the 

integral, the antiderivative and the derivative 

is a crucial step in building up the logos block. 

I n s i g h t s  f r o m  o t h e r  
s t u d e n t s ’  p e r f o r m a n c e s  

We can see many of the same tendencies 

also among five other students, and here we 

just present a short summary of observations 

from their first interview round.  Task t1 was 

solved rather quickly by all, using a single 

technique of integrating polynomials.  

Task t2 had considerably more variation 

in solution techniques. Although the presence 

of a graph made some of them consider 

finding the area under the graph, they all used 

algebraic techniques to arrive at the reference 

solution to t2a as their final answer.  

Both t3 and t4 posed significant challenges 

for the students. In the case of t3, John was the 

only one who managed to find the solution 

𝐺′(𝑥) = 𝑓(𝑥 + 1) − 𝑓(𝑥 − 1) . The other five 

students concluded erroneously that 𝐺′(𝑥) =

𝑓(𝑡). With respect to t4, four of the other five 

students failed to arrive at a solution, whereas 

the fifth student managed to solve it through 

a graphical exploration, concluding that 

𝐺′(𝑥) = 0 (see TOPPHOL, 2021). 
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D I S C U S S I O N   
The treatment of the FTC in the three 

Norwegian textbooks, which we interpret as 

the result of didactic transposition processes 

(STRØMSKAG & CHEVALLARD, 2024), is not 

an isolated phenomenon. A similar approach 

can be found in the German textbook titled 

Lambacher Schweizer (BRANDT et al., 2015), 

which has been the leading mathematics 

textbook series for the upper secondary level 

(Gymnasium) in Germany for decades, 

according to Stark (2011). For instance, in 

this textbook, the area function (referred to as 

“Integralfunktion”) is introduced after the 

treatment of the FTC, where it is stated 

without proof that this function is an 

antiderivative. Consequently, the area 

function is not explicitly provided as the link 

between antiderivatives and definite 

integrals, similar to the approach seen in the 

Norwegian textbooks. Despite its strong 

reputation for clarity and comprehensiveness 

(see “LAMBACHER SCHWEIZER,” 2011), we 

find this characteristic in the German 

textbook.  

The praxeology built up by John around 

the set of tasks Q, is mainly based on algebraic 

or symbol-based techniques. During the first 

interview, the most common technique he 

used was calculating the antiderivative. 

Finding algebraic expressions from graphical 

representations (in t2) and representing 

classes of functions graphically (in t3 and t4) 

were also common themes. But these 

techniques were still strongly based on 

algebraic procedures. Manipulation of the 

graphical representations and arguing based 

on them made up a very limited part of the 

praxeology constructed by John. The 

development from Interview 1 to Interview 2 

was also mainly algebraic. The most 

important new technique was to define 

general functions and to do calculations on 

them. It is likely that the notion of “rigor” put 

forward by the teaching institution has 

strongly induced the privileged use of 

algebraic procedures and the minimization of 

graphic considerations, as reflected in the 

praxeological work of John (and similarly 

observed in the five others). 

Furthermore, the logos appears to be 

relatively underdeveloped, especially 

concerning integration techniques. This 

aligns with John’s description of upper 

secondary mathematics as being fairly 

algorithmic. When he did provide 

explanations beyond algebraic calculations, 

they were often limited to recalling facts (e.g., 

explaining integration as “inverse 

differentiation”) or arguing by examples (e.g., 

using the sine function to illustrate a general 

periodic function). The exception to this was 

when identifying difficulties; for instance, 

when he needed to establish a connection 

between the variables 𝑥 and 𝑡 to solve task t3. 

In such cases, he could accurately identify the 

challenge and explain why he was unable to 

solve the problem. However, he lacked the 

theoretical knowledge to make this 

connection until he developed the technique 

of defining a new function himself, a method 

he mentioned he had not previously 

encountered in any task. 

Identification of an underdeveloped logos 

block is consistent with findings by Radmehr 

and Drake (2019), who found that students’ 

conceptual skills of integral-area 

relationships were considerably less 

developed than their procedural skills (see 

also MAHIR, 2009). In the ATD, “conceptual 

skills” are part of the logos block whereas 

“procedural skills” are part of the praxis block. 

Our study adds to the mentioned studies in 

that the logos block, with its technological and 

theoretical elements, provides more detailed 

description of the conceptual part of the 

knowledge at stake—here, integral calculus. 

Furthermore, by considering the treatment of 
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integration in the Grade 13 textbook used by 

John, this study points at the praxeological 

equipment of integration he likely developed 

at upper secondary level, and consequently, 

reveals conditions and constraints under 

which the praxeological work analyzed here 

was carried out. This enabled us to identify a 

potential causal relationship between the 

textbook’s treatment of integration and John’s 

praxeological shortcoming: an essential 

element of the FTC—area in terms of a 

function—was missing in the logos block of 

the textbook, which made tasks of type t2 

unsolvable. Since this flaw was observed also 

in other textbooks (Norwegian and German), 

our study has significance for a larger 

population.  

From the analysis of John’s praxeological 

work, a few key ideas emerge. First, we see 

that there is a focus on algebraic techniques, 

rather than graphical ones, a pattern 

corroborated by our observation of five other 

students. Although there were attempts to 

illustrate the problem graphically, most of the 

students failed at using the graphs in solving 

the problems, and they resorted to algebraic 

manipulations. A possible explanation 

concerns the emphasis on calculation in 

upper secondary mathematics: the examined 

textbooks tend to promote reliance on 

algebraic techniques, even during the 

exploration phase. This may even be 

strengthened at university, where they will 

encounter a focus on rigor.  

A second idea is what we perceive as a 

challenge in the treatment of parameters. John 

(as well as the other students observed) is 

clearly used to handling polynomial functions 

in their algebraic form, and to some extent 

also trigonometric functions. But challenges 

emerge in two situations. First, relating to t2, 

where there was a need to introduce the 

scaling of the graph itself and identify the unit 

length. Even if they managed to solve the task, 

several expressed discomfort with how the 

task was formulated; most of them failed to 

consider the more general solution (see 

reference solution to t2b) and preferred to 

solve it as if it was a specific function (refer to 

reference solution to t2a). Second, in tasks t3 

and t4, the link between the two variables t 

and x proved to be challenging. Only by 

introducing a new helper function, F(t), John 

managed to solve t3 in the second interview. 

These observations highlight the following 

difficulties: regarding task t2, the challenge 

lies in the conceptualization of an aspect of 

functions, such as the area under a graph, as 

itself a function; and concerning tasks t3 and 

t4, the challenge is in the generalization.  

To conclude, John’s praxeological 

equipment was predominantly composed of 

nonmaterial tools such as algebraic 

expressions and formulas, along with their 

manipulations. These tools are supplemented 

only sparingly by graphical representations, 

which are utilized mainly for illustrative 

purposes. However, a significant gap in his 

praxeological equipment was the 

underdevelopment of the logos block relating 

to the FTC, particularly evident in the 

integration techniques and conceptual 

explanations, which were often limited to 

simple recollections or example-based 

arguments. This deficiency is partly 

attributed to the didactic transposition 

evident in the textbooks used at secondary 

level, which tends to marginalize the 

conceptual linkage between antiderivatives 

and definite integrals, as observed in both 

Norwegian and German textbooks. 

C O N C L U S I O N  
The use of graphs and figures in exploring 

mathematical problems has a long history 

(see e.g., EDWARDS, 1979; KLINE, 1972). 

Combining geometry and algebra was crucial 

in developing functional analysis and 
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calculus, suggesting benefits in using both 

geometrical and algebraic techniques during 

exploration. The absence of these techniques 

among the interviewed students indicates a 

lack of previous exposure to such 

explorations, so a practical consequence of 

this study is the need for teacher education to 

address this imbalance by emphasizing the 

use of both graphical and algebraic methods.   

In particular, when addressing the type of 

tasks that involve computing a definite 

integral of a continuous function f over a 

closed interval [a, b] by finding an 

antiderivative and evaluating the difference 

between the values of this antiderivative at 

the endpoints of the interval, it is essential to 

clearly articulate in the logos block that the 

area function F for f, defined by 𝐹(𝑥) =

∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
, serves as an antiderivative of f. This 

principle is essential for evaluating the 

definite integral using the FTC, which states 

that the integral from a to b of f can be 

computed by finding the difference F(b)−F(a).  

Moving beyond specific tasks, the overall 

examination of the logos block of integral 

calculus related to Q reveals similar 

deficiencies across the larger sample of 

students. These students predominantly 

relied on ritualistic approaches, often 

resorting to memorization rather than 

engaging in mathematical reasoning and 

justification when solving the four tasks. 

This does confirm what has been shown 

already about students’ understanding of 

integral calculus (e.g., RADMEHR & DRAKE, 

2019; THOMPSON & HAREL, 2021). However, 

our study specifically connects these findings 

to a student’s study situation where the 

impact of educational resources is 

considered. Through textbook analysis, we 

have identified a potential causal link 

between a deficiency in the observed 

student’s praxeological equipment and the 

treatment of integral calculus in the textbook 

he had used at secondary level. 

The result about the deficient logos block 

calls for a critical review of the resources used 

in mathematics education, highlighting the 

broader consequences of didactic 

transposition processes and the related 

institutional fragmentation, particularly in 

mathematics textbooks. Consequently, there 

is a need for heightened awareness among 

educators at both secondary and tertiary 

levels about the effects of didactic 

transposition. This emphasizes the necessity 

of addressing these influences systematically.  

A practical implication of these findings 

in the field of teacher education is the need for 

educators and student teachers to be trained 

to understand the processes of didactic 

transposition and their effects on the 

mathematical knowledge to be taught. By 

becoming more familiar with didactic 

transposition analysis and its essential tool, 

praxeological analysis, along with principles 

like epistemic integrity, they will be more 

adept at evaluating and adapting their 

educational resources to more closely align 

with scholarly knowledge. 

Ultimately, a strategic solution would be 

the development of an archeorganization for 

integral calculus, akin to the one created by 

Strømskag and Chevallard (2024) for the 

concept of concavity of functions. Such a 

framework, as a praxeological organization of 

integral calculus, would serve as a vital 

epistemic tool, guiding curriculum designers 

and textbook authors through didactic 

transposition processes specific to integral 

calculus. Teacher education institutions are 

particularly suited to develop and implement 

archeorganizations, as they play a critical role 

in preparing future educators. By 

understanding didactic transposition, 

educators and curriculum designers can 

better navigate the complexities of 
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knowledge transformation, contributing to 

the development of praxeological 

organizations that ensure epistemic fidelity in 

mathematics education. 

An essential future research step is the 

development of an archeorganization for 

integral calculus that retains the core essence 

of the scholarly knowledge while making it 

accessible and viable for teaching. Once 

developed, further studies should explore the 

long-term impacts of such a praxeological 

organization on mathematics curricula, 

textbooks, and students’ comprehension of 

integral calculus.  
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